US009135439B2

a2 United States Patent

Montoro

US 9,135,439 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND APPARATUS TO DETECT
RISKS USING APPLICATION LAYER
PROTOCOL HEADERS

Applicant: Rodrigo Ribeiro Montoro,
Jurere-Florianopolis (BR)

Inventor: Rodrigo Ribeiro Montoro,
Jurere-Florianopolis (BR)

Assignee: Trustwave Holdings, Inc., Chicago, IL.
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 131 days.

Appl. No.: 13/839,810

Filed: Mar. 15,2013

Prior Publication Data
US 2014/0101764 Al Apr. 10, 2014

Related U.S. Application Data

Provisional application No. 61/710,223, filed on Oct.
5,2012.

Int. Cl1.

GO6F 21/56 (2013.01)

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC GO6F 21/56 (2013.01); HO4L 63/145

(2013.01); HO4L 67/02 (2013.01)
Field of Classification Search

CPC ... GOGF 21/56; HOAL 63/00; HO4L 63/145;
HO4L 67/02
USPC i 726/23-24

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,191,468 B2 3/2007 Hanner
7,392,541 B2 6/2008 Largman et al.
7,472,284 B2 12/2008 Shipp
7,975,305 B2 7/2011 Rubin et al.
8,181,246 B2 5/2012 Shulman et al.
8,244,799 Bl 8/2012 Salusky et al.
8,307,099 B1* 112012 Khannaetal. 709/229
8,341,724 Bl 12/2012 Burns et al.
8,510,548 B1* 82013 Markovetal. 713/150
8,806,641 B1* 82014 Lietal ...ccccocovrnenee. 726/24
2003/0023873 Al 1/2003 Ben-Itzhak
2003/0065926 Al 4/2003 Schultz et al.
2006/0095969 Al 5/2006 Portolani et al.
2007/0094734 Al* 4/2007 Mangione-Smith et al. ... 726/24
2008/0046565 Al 2/2008 Liu
(Continued)
OTHER PUBLICATIONS

Fielding et al., RFC 2616—Hypertext Transfer Protocol—HTTP/1.
1, Jun. 1999 *

(Continued)

Primary Examiner — Chau Le
(74) Attorney, Agent, or
Zimmerman, LLC

Firm — Hanley Flight &

(57) ABSTRACT

Methods, apparatus, systems and articles of manufacture to
detect risks using application protocol headers are disclosed.
An example method includes extracting characteristics from
a header of a received hypertext transport protocol (HTTP)
request, determining a first score corresponding to a first
characteristic of the characteristics, determining a second
score corresponding to a second characteristic of the charac-
teristics, adding the first score and the second score to deter-
mine a combined score, and indicating that the received
HTTP request is malware when the combined score meets a
threshold.

27 Claims, 4 Drawing Sheets

302

304

306

Receive packet
Extract header
Select first rule

Process selected rule
with header to obtain
score

308

Select next rule

310

NO
314
316

Score meets
threshold?

YES

Additional rules?

Combine scores

NO

320

318w

Report as risk

Report as safe

US 9,135,439 B2
Page 2

(56)

2008/0134331
2008/0320567
2009/0133125
2010/0306537
2011/0282908
2011/0283356
2011/0307955
2011/0307956
2012/0143650
2012/0297457

References Cited

U.S. PATENT DOCUMENTS

Al*
Al
Al*
Al
Al
Al
Al
Al
Al
Al*

6/2008
12/2008

5/2009
12/2010
11/2011
11/2011
12/2011
12/2011

6/2012
11/2012

Sung Won et al. 726/22
Shulman et al.

Choi et al.
Cohen
Fly et al.
Fly et al.
Kaplan et al.

Yermakov et al.

Crowley et al.

Schulteetal.ccceeeine 726/4

726/24

2012/0306537 Al 122012 Chouetal.

2013/0081142 Al1* 3/2013 McDougaletal. 726/24

2013/0097705 Al 4/2013 Montoro

2013/0111053 Al* 5/2013 Perreaultetal. 709/231
OTHER PUBLICATIONS

Genser, Michelle, “Trustwave SpiderLabs to Present at SecTor
20117, posted on Oct. 13, 2011, 2 pages.

Kerner, Sean Michael, “Detecting Malicious Traffic in HTTP Head-
ers,” InternetNews.com, Oct. 19, 2011, 1 page.

* cited by examiner

U.S. Patent Sep. 15, 2015 Sheet 1 of 4 US 9,135,439 B2

100 N\
SECURITY
NETWORK 104 AGENT SERVER
108 106
I
I
CLIENTS
102

FIG. 1

US 9,135,439 B2

Sheet 2 of 4

Sep. 15, 2015

U.S. Patent

vic
H3TTOdLNOD
NOILOV

¢ 9Old
2z
d010313a Msid
0T 902 4 — 202
Y3INIGNOD — HOLlVHINIASD HO1OVHIX3 H3IAAIEADTY
JHOOS H3Aav3aH 1DIOV4
80¢C AN

aASvaviva 3Ny

U.S. Patent Sep. 15, 2015 Sheet 3 of 4 US 9,135,439 B2

C START D)

!

302
N Receive packet

!

304
N Extract header

!

306
N Select first rule

r

Process selected rule 312
308 — N\
with header to obtain
score

!

Select next rule

310
Additional rules?
YES
¢ NO
314
N Combine scores
316 ¢
Score meets
threshold? NO
*YES 320 —
318
N Report as risk Report as safe

FIG. 3

U.S. Patent Sep. 15, 2015 Sheet 4 of 4 US 9,135,439 B2

|
428
| 414 MASS/_ | -
| RANDOM 1 STORAGE | e
ACCESS - e
| AcGESS /NSTRUCTIONS
Y 422 N
| /<232 - |
INPUT

| e DEVICE(S) l

_ |
| READ ONLY ¢ /420 =
| =~ MEMORY i l
| 0 418_\0 INTERFACE <—|—>
| 412 ¢ 424 |

OUTPUT
: PROCESSOR DEVICE(S) :
LOCAL >
| MEMORY |
B l
N\— 432

US 9,135,439 B2

1
METHODS AND APPARATUS TO DETECT
RISKS USING APPLICATION LAYER
PROTOCOL HEADERS

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/710,223, entitled “DETECTING MAL-
WARE WITH HTTP HEADER SCORING, which was filed
on Oct. 5, 2012 and is hereby incorporated herein by refer-
ence it its entirety.

FIELD OF THE DISCLOSURE

This disclosure relates generally to network communica-
tions, and, more particularly, to methods and apparatus to
detect risks using application layer protocol headers.

BACKGROUND

In recent years, the amount of malware network commu-
nications (e.g., hypertext transport protocol (HTTP) commu-
nications, HTTP secure (HTTPS) communications utilizing
secure socket layer (SSL), etc.) has grown. As used herein,
malware can include network communications sent with a
malicious intent (e.g., unauthorized communications, com-
munications sent from an unauthorized person, communica-
tions include harmful content such as viruses, communica-
tions attempting to illegitimately retrieve private and
information, etc.) and communications sent without a mali-
cious intent (e.g., communications including an error, com-
munications sent to an incorrect address, etc.). Malware net-
work communications, especially malware network
communications having a malicious intent, can cause damage
to servers and other network equipment, interfere with valid
network communications, and so forth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system 100 for
detecting risks using application layer protocol headers.

FIG. 2 is a block diagram of an example implementation of
the security agent of FIG. 1.

FIG. 3 is a flowchart representative of example machine
readable instructions for implementing the security agent of
FIG. 1.

FIG. 41is ablock diagram of an example processor platform
capable of executing the instructions of FIG. 3 to implement
the security agent of FIGS. 1 and/or 2.

The figures are not to scale. Instead, to clarify multiple
layers and regions, the thickness of the layers and regions may
be enlarged in the drawings. Wherever possible, the same
reference numbers will be used throughout the drawing(s)
and accompanying written description to refer to the same or
like parts.

DETAILED DESCRIPTION

Detection and/or control of malware network communica-
tions is desirable to prevent the malware network communi-
cations from causing damage, interfering with valid network
communications, etc. Example methods and apparatus dis-
closed herein facilitate the detection and control of malware
network communications by analyzing headers of network
communications to identify network communications that are
determined to have a significant risk of being malware net-
work communications. In some examples disclosed herein

10

15

20

25

30

35

40

45

50

55

60

65

2

the network communications are communications using an
application layer protocol (e.g., hypertext transport protocol
(HTTP) communications) and the disclosed methods and
apparatus analyze HTTP header information to identify
HTTP communications that are determined to have a signifi-
cant risk of being malware network communications. For
example, the disclosed methods and apparatus may analyze
the length of a user agent field of an HTTP header to different
between HTTP communications that are a risk and HTTP
communications that are not a risk. As disclosed herein, some
examples analyze other characteristics of the HTTP header.
In some examples disclosed herein, the analysis of the char-
acteristics of the HTTP headers results in scores associated
with the characteristics. The scores may be combined to
determine a combined score, the combined score may be
compared with a threshold, and HTTP communications hav-
ing a combined score that meets a threshold may be acted
upon (e.g., an alert may be generated, the HT'TP communi-
cations may be blocked, the HT'TP communications may be
redirected, the HTTP communications may be delayed, etc.).

FIG. 1 is a block diagram of an example system 100 for
detecting risks using application layer protocol headers. An
example application layer protocol is HTTP. While HTTP is
referenced in the examples described herein, headers of any
application layer protocol may be used (e.g., real-time trans-
port protocol (RTP), transport layer security (TLS), secure
sockets layer (SSL), remote procedure call (RPC), etc.). The
example system 100 includes client(s) 102, a network 104, a
server 106, and a security agent 108.

The client(s) 102 of the illustrated example send and
receive communications via the network 104. The example
client(s) 102 send HTTP requests to the server 106 and
receive HTTP responses from the server 106. Alternatively,
the client(s) 102 could send communications to any other
destination. The client(s) 102 may be any type of computing
device (e.g., a user computing device, a server, a portable
computing device, etc.). Some of the client(s) 102 may send
malware communications. For example, the client(s) 102
could be operated by users with malicious intent, could be
infected with a virus that allows a person other than users of
the client(s) 102 to send communications with a malicious
intent, could be improperly configured such that the client(s)
102 send communications having an error, and so forth.

The example network 104 of FIG. 1 communicatively
couples the client(s) 102 to other devices and networks. In the
illustrated example, the client(s) 102 are communicatively
coupled to the server 106 via the network 104 and the security
agent 108. The example network 104 is the internet. Alterna-
tively, the network 104 may be any type of network such as a
wide area network, a local area network, a wired network, a
wireless network, etc. While a single network is illustrated,
the system 100 may include any number and types of net-
works.

The example server 106 of FIG. 1 is a web server that
communicates using HTTP. The example server 106 receives
HTTP requests (e.g., GET requests, POST requests, etc.)
from the client(s) 102 and, in response, transmits web pages
using HTTP. The server 106 may alternatively be any other
type of server (e.g., an audio server, a video server, a file
transfer protocol (FTP) server, a voice telephony server, etc.)
and may communicate using any other protocol or combina-
tion of protocols.

The example security agent 108 of FIG. 1 receives com-
munications sent from the client(s) 102 to the server 106 and
selectively transmits the communications to the server 106 if
the security agent 108 determines that HTTP headers of the
communications indicate a risk that the communications are

US 9,135,439 B2

3

malware. The example security agent 108 is a web application
firewall. Alternatively, the security agent 108 may be any
other device such as, for example, any other type of firewall,
a gateway, a router, a server (e.g., a security application
executing on the server 106), an intrusion detection/preven-
tion system, a filter, etc. While the example security agent 108
selectively passes communications to the server 106, the
security agent 108 may perform any other action(s) such as,
for example, delaying communications determined to be mal-
ware, transmitting communications to another location/de-
vice (e.g., adevice that can perform additional analysis and/or
be reviewed by an administrator), tagging or labeling com-
munications determined to be malware, etc.

A block diagram of an example implementation of the
security agent 108 is illustrated in FIG. 2. The security agent
108 of FIG. 2 includes a packet receiver 202, a header extrac-
tor 204, a score generator 206, a rule database 208, a combiner
210, a risk detector 212, and an action controller 214.

The packet receiver 202 of the illustrated example receives
communication packets sent by the client(s) 102. The
example packet receiver 202 is communicatively coupled
with the network 104 of FIG. 1 to receive the communication
packets sent by the client(s) 102. Alternatively, the packet
receiver 202 could be communicatively coupled to the
client(s) 102 in any other manner. The packet receiver 202
transmits the received communication packets to the header
extractor 204 and the action controller 214. While, for sim-
plicity, the transmission of communication packets to the
client(s) 102 from the server 106 is not illustrated, the packet
receiver 202 may additionally transmit communication pack-
ets to the client(s) 102 via the network 104.

The example header extractor 204 extracts headers from
communication packets received from the packet receiver
202 and transmits the headers to the score generator 206 for
analysis. The example header extractor 204 extracts the entire
headers (e.g., the HITP header). Alternatively, the header
extractor 204 may extract selected portions of the headers
(e.g., portions of the headers to be analyzed by the score
generator 206). For example, headers may include a number
of fields. An example HTTP request include several header
fields is shown in Table 1 below. The example header a User-
Agent field, a Host field, and a Pragma field.

TABLE 1

GET/HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1)

Host: www.sampleaddress.com

Pragma: no-cache

The example score generator 206 receives the headers from
the from the header extractor 204 and analyzes the headers
using rules stored in the rule database 208 to generate a set of
scores associated with the communication packets received
by the packet receiver 202. The example score generator 206
iteratively applies rules in the rule database 208 to determine
a series of scores that are sent to the combiner 210. The rule
database 208 may be any type of data storage such as, for
example, a database, a file, a table, etc.

The rules stored in the rule database 208 indicate charac-
teristics of the headers to be analyzed and scoring values
associated with those characteristics. The rules may be devel-
oped through analysis of experimental data (e.g., communi-
cation packets that have already been labeled as malware or
non-malware (e.g., by a human reviewer) to determine char-

20

40

45

50

4

acteristics of headers that differentiate between malware and
non-malware communication packets.

For example, HTTP headers include a user agent field that
typically carries information about the application that trans-
mitted the HTTP communication packet. The length of the
user agent field can be analyzed to differentiate between
malware and non-malware HTTP communication packets.
An example rule indicates that the length of the user agent
fieldis scored as: 1.6 for alength between 1 and 20 characters,
1.4 for a length between 21 and 30 characters, 1.1 for a length
between 31 and 40 characters, 0.8 for a length between 40 and
70 characters, 0.4 for a length between 71 and 90 characters,
and -0.7 for alength between 91 and 1000 characters (e.g., in
a system where a higher score increases the risk that the
communication packet is malware). Thus, the short the user
agent field, the greater the risk that the communication packet
is malware. Many other rules may be stored in the rule data-
base 208 and additional rules are described herein.

The combiner 210 of the illustrated example combines the
set of scores received from the score generator 206 to deter-
mine a single score associated with a communication packet.
The example combiner 210 sums the scores to determine a
combined score. Alternatively, any other operation for com-
bining the scores may be utilized. The combiner 210 trans-
mits the combined score to the risk detector 212.

The example risk detector 212 analyzes the combined
score to analyze a risk that a communication packet is mal-
ware. The example risk detector 212 analyzes the risk by
comparing the combined score received from the combiner
210 with a threshold. When the combined score meets the
threshold, the communication packet under analysis is deter-
mined to be malware. In the illustrated example, the com-
bined score meets the threshold when it exceeds the thresh-
old. Alternatively, the combined score meets the threshold
when it is equal to the threshold and/or less than the threshold.
The risk detector 212 transmits the results of the analysis to
the action controller 214.

The example action controller 214 blocks communication
packets that are indicated to be malware by the risk detector
212 (e.g., the communication packets received from the
packetreceiver 202 in parallel with the analysis of the headers
of'the communication packets). Alternatively, the action con-
troller 214 may perform any other action based on the results
of the risk detector 212. For example, the action controller
214 may label communication packets determined to be mal-
ware and/or non-malware, may delay communication packets
determined to be malware, may forward communication
packets to another location, may flag communication packets
for human review, may transmit a reset in response to the
communication packet, etc. The particular action performed
by the action controller 214 may be configured by a user.
Additionally, multiple actions may be performed.

While an example manner of implementing the security
agent 108 of FIG. 1 is illustrated in FIG. 2, one or more of the
elements, processes and/or devices illustrated in FIG. 2 may
be combined, divided, re-arranged, omitted, eliminated and/
orimplemented in any other way. Further, the example packet
receiver 202, the example header extractor 204, the example
score generator 206, the example rule database 208, the
example combiner 210, the example risk detector 212, the
example action controller 214 and/or, more generally, the
example security agent 108 of FIG. 2 may be implemented by
hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example packet receiver 202, the example header
extractor 204, the example score generator 206, the example
rule database 208, the example combiner 210, the example

US 9,135,439 B2

5

risk detector 212, the example action controller 214 and/or,
more generally, the example security agent 108 of FIG. 2
could be implemented by one or more analog or digital cir-
cuit(s), logic circuits, programmable processor(s), applica-
tion specific integrated circuit(s) (ASIC(s)), programmable
logic device(s) (PLD(s)) and/or field programmable logic
device(s) (FPLD(s)). When reading any of the apparatus or
system claims of this patent to cover a purely software and/or
firmware implementation, at least one of the example, packet
receiver 202, the example header extractor 204, the example
score generator 206, the example rule database 208, the
example combiner 210, the example risk detector 212, and/or
the example action controller 214 are hereby expressly
defined to include a tangible computer readable storage
device or storage disk such as a memory, a digital versatile
disk (DVD), a compact disk (CD), a Blu-ray disk, etc. storing
the software and/or firmware. Further still, the example secu-
rity agent 108 of FIG. 1 may include one or more elements,
processes and/or devices in addition to, or instead of, those
illustrated in FIG. 2, and/or may include more than one of any
or all of the illustrated elements, processes and devices.

A flowchart representative of example machine readable
instructions for implementing the security agent 108 of FIG.
1 is shown in FIG. 3. In this example, the machine readable
instructions comprise a program for execution by a processor
such as the processor 412 shown in the example processor
platform 400 discussed below in connection with FIG. 6. The
program may be embodied in software stored on a tangible
computer readable storage medium such as a CD-ROM, a
floppy disk, a hard drive, a digital versatile disk (DVD), a
Blu-ray disk, or a memory associated with the processor 412,
but the entire program and/or parts thereof could alternatively
be executed by a device other than the processor 412 and/or
embodied in firmware or dedicated hardware. Further,
although the example program is described with reference to
the flowchart illustrated in FIG. 3, many other methods of
implementing the example security agent 108 may alterna-
tively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined.

As mentioned above, the example processes of FIG. 3 may
be implemented using coded instructions (e.g., computer and/
or machine readable instructions) stored on a tangible com-
puter readable storage medium such as a hard disk drive, a
flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage device or
storage disk in which information is stored for any duration
(e.g., for extended time periods, permanently, for brief
instances, for temporarily buffering, and/or for caching of the
information). As used herein, the term tangible computer
readable storage medium is expressly defined to include any
type of computer readable storage device and/or storage disk
and to exclude propagating signals. As used herein, “tangible
computer readable storage medium” and “tangible machine
readable storage medium” are used interchangeably. Addi-
tionally or alternatively, the example processes of FIG. 3 may
be implemented using coded instructions (e.g., computer and/
or machine readable instructions) stored on a non-transitory
computer and/or machine readable medium such as a hard
disk drive, a flash memory, a read-only memory, a compact
disk, a digital versatile disk, a cache, a random-access
memory and/or any other storage device or storage disk in
which information is stored for any duration (e.g., for
extended time periods, permanently, for brief instances, for
temporarily buffering, and/or for caching of the information).
As used herein, the term non-transitory computer readable

20

25

40

45

6

medium is expressly defined to include any type of computer
readable device or disk and to exclude propagating signals. As
used herein, when the phrase “at least” is used as the transition
term in a preamble of a claim, it is open-ended in the same
manner as the term “comprising” is open ended.

The program of FIG. 3 begins when the packet receiver 202
of FIG. 2 receives a communication packet (block 302). For
example, the communication packet may be an HT'TP request
sent from one of the client(s) 102 to the server 106. The
header extractor 204 extracts a header from the communica-
tion packet (block 304). For example, the header extractor
204 may extract the contents of an HTTP header of the com-
munication packet.

The score generator 206 then selects a first rule from the
rule database 208 (block 306). The score generator 206 pro-
cesses the selected rule with the header information extracted
by the header extractor 204 to obtain a score (block 308). The
score generator 206 determines if there are additional rules in
the rule database to be processed (block 310). When there are
additional rules to be processed, the score generator 206
selects the next rule (block 312) and control returns to block
308 to process the next rule.

When there are no additional rules to be processed, the
combiner 210 combines the scores associated with each of the
rules to calculate a combined score for the communication
packet (block 314). For example, the combiner 210 may sum
the values of the scores determined for each of the rules.

The risk detector 212 then determines if the combined
score exceeds a threshold (block 316). For example, the risk
detector 212 may compare the combined score to a predeter-
mined threshold, a threshold specified by a user and/or
administrator, etc. When the score meets threshold (e.g., any
combination of: exceeds the threshold, equals the threshold,
or is less than the threshold), the risk detector 212 reports the
communication packet as a risk of malware (block 318).
When the score does not meet the threshold, the risk detector
212 reports the communication as safe (block 320).

For example, the risk detector 212 may report the determi-
nation of malware risk to the action controller 214, which may
perform an action based on the determination. For example,
when the risk detector 212 determines that the communica-
tion packet is a risk of malware, the action controller 214 may
prevent the packet from being transmitted to the server 106.
Alternatively, in such an example, when the risk detector 212
determines that the communication packet is safe, the action
controller 214 may transmit the communication packet to the
server 106.

In block 318 and block 320, the risk detector 212 may
additionally generate a report indicating the results of the
analysis of the headers. An example report for the HTTP
communication in Table 2 is show in Table 3.

TABLE 2

POST /webmail/bin/index2.php HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; ICS)

Host: www.samplepage.com

Content-Length: 76

TABLE 3

4.7 - [-] Malicious Header located
0.4 No Risky File Extension Found Baseline
0.5 HTTP/1.0 Found
1.8 FQDN Host Header and HTTP/1.0 Found

US 9,135,439 B2

7
TABLE 3-continued

1.4 User Agent Length 21 —> 30
0.6 Number of Headers 6 —> 8

Inthe example of Tables 2 and 3, the combined score for the
HTTP communication headers of Table 2 is 4.7. In the
example, 4.7 exceeds the threshold for a determination of
malware (e.g., 4.0) and thus, the HTTP communication is
identified as having a Malicious Header. For example, a base-
line value of 0.4 was assigned because no risky file extensions
were included in the header, a value of 0.5 was assigned
because the HT'TP/1.0 version was identified in the header, a
value of 1.8 was assigned because the header included a Host
field even though a host field is not specified in the standard
for HT'TP/1.0, a value of 1.4 was assigned because the user
agent field was between 21 and 30 characters in length, and a
value of 0.6 was assigned because the header include between
6 and 8 separate header fields.

While the program of FIG. 3 is described with reference to
the security agent 108 of FIGS. 1 and 2, the program may be
executed and/or implemented by any other component and/or
device.

Several example rules that may be stored in the rule data-
base 208 and utilized by the score generator 206 (e.g., inblock
308 of FIG. 3) and/or more generally by the security agent are
now described. The rules may be incorporated into any of the
foregoing methods and apparatus.

HTTP headers typically include a user agent field that
includes information about the application and/or device
transmitting an HTTP request. The length of the user agent
field has been found to be useful in differentiating between
malware and non-malware HTTP communications. The
score generator 206 may, thus, issue a score based on the
length of the user agent field. An example rule indicates that
the length of the user agent field is scored as: 1.6 for a length
between 1 and 20 characters, 1.4 for a length between 21 and
30 characters, 1.1 for a length between 31 and 40 characters,
0.8 for a length between 40 and 70 characters, 0.4 for a length
between 71 and 90 characters, and -0.7 for a length between
91 and 1000 characters (e.g., in a system where a higher score
increases the risk that the communication packet is malware).

A count of the number of fields found in an HTTP header
has been found to be useful in differentiating between mal-
ware and non-malware HTTP communications. The score
generator 206 may, thus, issue a score based on the number of
fields in the HTTP header. An example rule indicates that the
number of header fields is scored as: 2.0 for 1 to 3 headers, 1.4
for 4 headers, 1.0 for 5 headers, 0.6 for 6 to 8 headers, —0.5 for
9 to 100 headers (e.g., in a system where a higher score
increases the risk that the communication packet is malware).

A rule may assign a score based on the HTTP protocol
version identified in an HTTP communication. The score may
be assigned based on an HTTP header identifying an HTTP
version and including fields that do not correspond to that
HTTP version (e.g., the headers do not follow the established
standards such as Request For Comments (RFC) standards).
For example, a score indicative of malware may be assigned
to an HTTP header that identifies the HTTP communication
as using HT'TP/1.0 but includes a “Host” header field that is
not sent in a proper HT'TP/1.0 HTTP communication.

A rule may assign a score based on a uniform resource
identifier (URI) identified in a header. For example, file exten-
sions that are determined to be more likely to be malware may
be assigned a score indicative of malware. For example, a
score indicative of malware may be assigned to the following
extensions: .jpg, .gif, .exe, .pac, .swi, .cfg, and .bin.

10

15

20

25

30

35

40

45

50

55

60

65

8

A rule may assign a score based on the presence of a cookie
header. For example, a score indicative of malware may be
assigned to headers that do not include a cookie header.

A rule may assign a score based on the order of header
fields in a communication packet. For example, known appli-
cations (e.g., web browsers) list header fields in a particular
order. A score indicative of malware may be assigned to
headers that includes fields in an order that does not match the
order for the application identified in a user agent field of the
header. For example, if a particular application is known to
list a user agent field as the third field in a header but a
communication packet is received having a header that
includes the user agent field as the second field in the header,
a score indicative of malware may be assigned for the header
field ordering rule.

The particular scoring values described herein are
examples. Any scoring values may be utilized and associated
with an appropriate threshold. For example, while the
examples included herein specify greater values for scoring
indicating a greater likelihood that a communication packet is
malware, lower values may alternatively indicate malware.
For example, a score of zero could be neutral, a negative score
could be more likely malware and a positive score could be
less likely to be malware. In some examples, a score is only
given to a rule if the rule indicates some likelihood that the
communication packet is malware (e.g., a score of zero is
assigned if the rule does not indicate a likelihood of malware).
The scoring may be adjusted based on analyzing the results of
the methods and apparatus. For example, if the scoring for a
particular rule creates too many false positives, the scoring
may be adjusted accordingly.

The analysis of headers may be combined with other analy-
ses to determine if a communication packet is malware. For
example, the analysis may be supplemented with blacklists of
known malicious information and/or whitelists of known safe
information. For example, user agent blacklists, filename
blacklists, URI blacklists, domain name blacklists, top level
domain (TLD) blacklists, etc. Third party reporting services
may be consulted. For example, the analysis may include
geographical internet protocol information (GEOip), infor-
mation contained in WHOIS data, blacklist and whitelist
services (e.g., real-time blacklist (RBL) services), internet
protocol reputation listings, etc.

FIG. 4 is ablock diagram of an example processor platform
400 capable of executing the instructions of FIG. 3 to imple-
ment the security agent 108 of FIGS. 1 and/or 2. The proces-
sor platform 400 can be, for example, a server, a personal
computer, a mobile device (e.g., a cell phone, a smart phone,
atablet such as an iPad™), a personal digital assistant (PDA),
an Internet appliance, a DVD player, a CD player, a digital
video recorder, a Blu-ray player, a gaming console, a personal
video recorder, a set top box, or any other type of computing
device.

The processor platform 400 of the illustrated example
includes a processor 412. The processor 412 of the illustrated
example is hardware. For example, the processor 412 can be
implemented by one or more integrated circuits, logic cir-
cuits, microprocessors or controllers from any desired family
or manufacturer.

The processor 412 of the illustrated example includes a
local memory 413 (e.g., a cache). The processor 412 of the
illustrated example is in communication with a main memory
including a volatile memory 414 and a non-volatile memory
416 via a bus 418. The volatile memory 414 may be imple-
mented by Synchronous Dynamic Random Access Memory
(SDRAM), Dynamic Random Access Memory (DRAM),
RAMBUS Dynamic Random Access Memory (RDRAM)

US 9,135,439 B2

9

and/or any other type of random access memory device. The
non-volatile memory 416 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the main memory 414, 416 is controlled by a
memory controller.

The processor platform 400 of the illustrated example also
includes an interface circuit 420. The interface circuit 420
may be implemented by any type of interface standard, such
as an Ethernet interface, a universal serial bus (USB), and/or
a PCI express interface.

In the illustrated example, one or more input devices 422
are connected to the interface circuit 420. The input device(s)
422 permit(s) a user to enter data and commands into the
processor 1012. The input device(s) can be implemented by,
for example, a keyboard, a button, a mouse, a touchscreen, a
track-pad, a trackball, isopoint and/or a voice recognition
system.

One or more output devices 424 are also connected to the
interface circuit 420 of the illustrated example. The output
devices 424 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode ray
tube display (CRT), a touchscreen, a tactile output device, a
light emitting diode (LED), a printer and/or speakers). The
interface circuit 420 of the illustrated example, thus, typically
includes a graphics driver card, a graphics driver chip or a
graphics driver processor.

The interface circuit 420 of the illustrated example also
includes a communication device such as a transmitter, a
receiver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 426 (e.g.,
an Ethernet connection, a digital subscriber line (DSL), a
telephone line, coaxial cable, a cellular telephone system,
etc.).

The processor platform 400 of the illustrated example also
includes one or more mass storage devices 428 for storing
software and/or data. Examples of such mass storage devices
428 include floppy disk drives, hard drive disks, compact disk
drives, Blu-ray disk drives, RAID systems, and digital versa-
tile disk (DVD) drives.

The coded instructions 432 of FIG. 3 may be stored in the
mass storage device 428, in the volatile memory 414, in the
non-volatile memory 416, and/or on a removable tangible
computer readable storage medium such as a CD or DVD.

From the foregoing, it will appreciate that the above dis-
closed methods, apparatus and articles of manufacture facili-
tate detection of malware communications. By detecting mal-
ware communications and, for example, blocking the
malware communications, servers and other computing
devices can be detected from the harm caused by such mal-
ware communications.

Although certain example methods, apparatus and articles
of manufacture have been disclosed herein, the scope of cov-
erage of this patent is not limited thereto. On the contrary, this
patent covers all methods, apparatus and articles of manufac-
ture fairly falling within the scope of the claims of this patent.

What is claimed is:
1. A method to analyze network communications, the
method comprising:

extracting characteristics from a header of a received
hypertext transport protocol (HTTP) request;

determining a length of a user agent field of the header as a
first characteristic of the characteristics;

determining, via a processor, a first score as a first value
when the length of the user agent field is less than a

10

15

20

25

30

35

40

45

50

55

60

65

10

length threshold, wherein the first value indicates that
the received HTTP request is more likely to be malware;

determining a second score corresponding to a second
characteristic of the characteristics;

adding the first score and the second score to determine a
combined score; and

indicating that the received HT TP request is malware when
the combined score meets a threshold.

2. A method as defined in claim 1, further including:

determining a number of fields in the header;

determining the second score as a first value for the second
score when the number of fields is less than a number
threshold; and

determining the second score as a second value for the
second score when the number of fields is greater than
the number threshold, wherein the first value for the
second score indicates that the received HT'TP request is
more likely to be malware than the second value for the
second score.

3. A method as defined in claim 1, further including:

determining a protocol version identified in the header;

determining the second score as a first value for the second
score when the header includes a field not associated
with the protocol version; and

determining the second score as a second value for the
second score when the header does not include fields
that are not associated with the protocol version,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

4. A method as defined in claim 1, further including:

determining if the header identifies a uniform resource
identifier having a file extension identified as being more
likely to be associated with malware;

determining the second score as a first value for the second
score when the header identifies the file extension; and

determining the second score as a second value for the
second score when the header does not identify the file
extension, wherein the first value for the second score
indicates that the received HTTP request is more likely
to be malware than the second value for the second
score.

5. A method as defined in claim 1, further including:

determining if the header identifies a cookie;

determining the second score as a first value for the second
score when the header identifies the cookie; and

determining the second score as a second value for the
second score when the header does not include the
cookie, wherein the first value for the second score indi-
cates that the received HTTP request is more likely to be
malware than the second value for the second score.

6. A method as defined in claim 1, further including:

determining an application that sent the received HTTP
request based on a user agent field of the header;

determining a known ordering of header fields associated
with the application;

determining the second score as a first value for the second
score when an order of fields of the header of the
received HTTP request does not match the known order-
ing; and

determining the second score as a second value for the
second score when the order of the fields of the header of
the received HTTP request matches the known ordering,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

US 9,135,439 B2

11

7. A method as defined in claim 1, wherein the received
HTTP request utilizes secure socket layer.

8. A method as defined in claim 1, further including, in
response to indicating that the received HT TP request is mal-
ware, preventing the received HT TP request from reaching a
destination identified in the received HTTP request.

9. A method as defined in claim 1, the method further
including:

determining the first score as a second value when length of
the user agent field is greater than the length threshold.

10. An apparatus to analyze network communications, the
apparatus comprising:

a header extractor to extract characteristics from a header
of a received hypertext transport protocol (HTTP)
request, wherein a user agent field is a first characteristic
of the characteristics;

a score generator to determine a first score as a first value
when a length of the user agent field is less than a length
threshold, wherein the first value indicates that the
received HTTP request is more likely to be malware,
determine a second score corresponding to a second
characteristic of the characteristics;

adding the first score and the second score to determine a
combined score;

a combiner to add the first score and the second score to
determine a combined score; and

arisk detector to indicate that the received HTTP request is
malware when the combined score meets a threshold,
wherein at least one of the header extractor, the score
generator, or the risk detector is implemented via a logic
circuit.

11. An apparatus as defined in claim 10, the score generator

is to determine the second score by:

determining a number of fields in the header;

determining the second score as a first value for the second
score when the number of fields is less than a number
threshold; and

determining the second score as a second value for the
second score when the number of fields is greater than
the number threshold, wherein the first value for the
second score indicates that the received HTTP request is
more likely to be malware than the second value for the
second score.

12. An apparatus as defined in claim 10, the score generator

is to determine the second score by:

determining a protocol version identified in the header;

determining the second score as a first value for the second
score when the header includes a field not associated
with the protocol version; and

determining the second score as a second value for the
second score when the header does not include fields
that are not associated with the protocol version,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

13. An apparatus as defined in claim 10, the score generator

is to determine the second score by:

determining if the header identifies a uniform resource
identifier having a file extension identified as being more
likely to be associated with malware;

determining the second score as a first value for the second
score when the header identifies the file extension; and

determining the second score as a second value for the
second score when the header does not identify the file
extension, wherein the first value for the second score

5

—

5

20

25

30

35

40

45

50

55

60

65

12

indicates that the received HTTP request is more likely
to be malware than the second value for the second
score.

14. An apparatus as defined in claim 10, the score generator
is to determine the second score by:

determining if the header identifies a cookie;

determining the second score as a first value for the second

score when the header identifies the cookie; and
determining the second score as a second value for the
second score when the header does not include the
cookie, wherein the first value for the second score indi-
cates that the received HTTP request is more likely to be
malware than the second value for the second score.

15. An apparatus as defined in claim 10, the score generator
is to determine the second score by:

determining an application that sent the received HTTP

request based on a user agent field of the header;
determining a known ordering of header fields associated
with the application;

determining the second score as a first value for the second

score when an order of fields of the header of the
received HTTP request does not match the known order-
ing; and

determining the second score as a second value for the

second score when the order of the fields of the header of
the received HTTP request matches the known ordering,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

16. An apparatus as defined in claim 10, wherein the
received HTTP request utilizes secure socket layer.

17. An apparatus as defined in claim 10, an action control-
ler to, in response to the risk detector indicating that the
received HTTP request is malware, prevent the received
HTTP request from reaching a destination identified in the
received HTTP request.

18. An apparatus as defined in claim 10, wherein the score
generator is further to:

determine the first score as a second value when length of

the user agent field is greater than the length threshold.

19. A tangible computer readable storage medium includ-
ing instructions that, when executed, cause a machine to at
least:

extract characteristics from a header of a received hyper-

text transport protocol (HTTP) request, wherein a user
agent field of the header is a first characteristic of the
characteristics;

determine a length of the user agent field of the header;

determine a first score as a first value when the length of the

user agent field is less than a length threshold, wherein
the first value indicates that the received HT TP request is
more likely to be malware;

determine a second score corresponding to a second char-

acteristic of the characteristics;

add the first score and the second score to determine a

combined score; and

indicate that the received HT'TP request is malware when

the combined score meets a threshold.

20. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions cause the
machine to determine the second score by:

determining a number of fields in the header;

determining the second score as a first value for the second

score when the number of fields is less than a number
threshold; and

determining the first score as a second value for the second

score when the number of fields is greater than the num-

US 9,135,439 B2

13

ber threshold, wherein the first value for the second
score indicates that the received HTTP request is more
likely to be malware than the second value for the second
score.

21. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions cause the
machine to determine the second score by:

determining a protocol version identified in the header;

determining the second score as a first value for the second

score when the header includes a field not associated
with the protocol version; and

determining the second score as a second value for the

second score when the header does not include fields
that are not associated with the protocol version,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

22. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions cause the
machine to determine the second score by:

determining if the header identifies a uniform resource

identifier having a file extension identified as being more
likely to be associated with malware;
determining the second score as a first value for the second
score when the header identifies the file extension; and

determining the second score as a second value for the
second score when the header does not identify the file
extension, wherein the first value for the second score
indicates that the received HTTP request is more likely
to be malware than the second value for the second
score.

23. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions cause the
machine to determine the second score by:

determining if the header identifies a cookie;

determining the second score as a first value for the second

score when the header identifies the cookie; and

10

15

20

25

30

14

determining the second score as a second value for the
second score when the header does not include the
cookie, wherein the first value for the second score indi-
cates that the received HTTP request is more likely to be
malware than the second value for the second score.

24. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions cause the
machine to determine the second score by:

determining an application that sent the received HTTP

request based on a user agent field of the header;
determining a known ordering of header fields associated
with the application;

determining the second score as a first value for the second

score when an order of fields of the header of the
received HTTP request does not match the known order-
ing; and

determining the second score as a second value for the

second score when the order of the fields of the header of
the received HTTP request matches the known ordering,
wherein the first value for the second score indicates that
the received HTTP request is more likely to be malware
than the second value for the second score.

25. A tangible computer readable storage medium as
defined in claim 19, wherein the received HTTP request uti-
lizes secure socket layer.

26. A tangible computer readable medium as defined in
claim 19, wherein the instructions, when executed, cause the
machine to, in response to indicating that the received HT TP
request is malware, prevent the received HTTP request from
reaching a destination identified in the received HTTP
request.

27. A tangible computer readable medium as defined in
claim 19, wherein the instructions, when executed cause the
machine to:

determine the first score as a second value when length of

the user agent field is greater than the length threshold.

#* #* #* #* #*

